Irregularities in the distribution of primes in an arithmetic progression

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primes in arithmetic progression

Prime numbers have fascinated people since ancient times. Since the last century, their study has acquired importance also on account of the crucial role played by them in cryptography and other related areas. One of the problems about primes which has intrigued mathematicians is whether it is possible to have long strings of primes with the successive primes differing by a fixed number, namely...

متن کامل

Irregularities in the Distribution of Primes and Twin Primes

The maxima and minima of sL(x)) — n(x), iR(x)) — n(x), and sL2(x)) — n2(x) in various intervals up to x = 8 x 10 are tabulated. Here n(x) and n2(x) are respectively the number of primes and twin primes not exceeding x, L(x) is the logarithmic integral, R(x) is Riemann's approximation to ir(x), and L2(x) is the Hardy-Littlewood approximation to ti"2(;c). The computation of the sum of inverses of...

متن کامل

Averaging Effects on Irregularities in the Distribution of Primes in Arithmetic Progressions

Let t be an integer taking on values between 1 and x (x real), let irhc(t) denote the number of positive primes < t which are s c (mod b), and let li t denote the usual integral logarithm of /. Further, let the ratio of quadratic nonresidues of b > 2 to quadratic residues of bbey(b) to 1, and let l/ * * , Ah(x) = (i/y(b))-\ £ n.c(0-r(») L "i,X>)\ M<c<*-1 l«c'<Ä-l ' where c runs over quadratic n...

متن کامل

On the Second Moment for Primes in an Arithmetic Progression

Abstract. Assuming the Generalized Riemann Hypothesis, we obtain a lower bound within a constant factor of the conjectured asymptotic result for the second moment for primes in an individual arithmetic progression in short intervals. Previous results were averaged over all progression of a given modulus. The method uses a short divisor sum approximation for the von Mangoldt function, together w...

متن کامل

Primes in Arbitrarily Long Arithmetic Progression

It has been a long conjecture that there are arbitrarily long arithmetic progressions of primes. As of now, the longest known progression of primes is of length 26 and was discovered by Benoat Perichon and PrimeGrid in April, 2010 ([1]): 43142746595714191+23681770·223092870n for n = 0, 1, · · · , 25. Many mathematicians have spent years trying to prove (or disprove) this conjecture, and even mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1996

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-77-2-173-177